
 
 

 
 
 
 
 

Dataflow analysis in the L1 Pixel Trigger Processor 
Farm 

 
 
 
 

BTeV-doc-1178, version 1 
19 September 2002 

 
 

Gustavo Cancelo for the BTeV Trigger Group 
 



Table of Contents 
1 Dataflow analysis in the L1 Pixel Trigger Processor Farm 3 
2 Input data characterization 4 

2.1 The event execution time distribution 4 
2.2 The Farmlet input distribution 5 

3 Elementary Dataflow Analysis 5 
4 Processor Failure Analysis 6 

4.1 Node Failures 7 
4.2 Transient Analysis 7 
4.3 Orthogonal Least-Squared Approximations to the Transient Analysis of the M/M/1 queue 8 
4.4 Simulations of the M/M/1 transient behavior 11 

1 



1 Dataflow analysis in the L1 Pixel Trigger Processor Farm 
 
The architecture of the L1 Track and Vertex (T&V) is simplified by the fact that each event is processed 
independently. There is neither time-correlation nor need of data sharing among the computing nodes. Each 
processor works on the events it has been assigned to, without need of communicating or exchanging 
information with other processors. There is not need for shared pools of memory either. In consequence, 
the dataflow analysis is simplified. However, a critical issue in such a massive parallel processing system is 
reliability. It is important to study the dynamics of the dataflow when a computing node fails (i.e. a 
processor or associated electronics). Another important issue is determining the optimum number of nodes 
in the basic package that we have called the Farmlet. Even when the nodes work fairly independently, the 
nodes on the same Farmlet can share resources and services. It is easy to demonstrate that incrementing the 
number of processors per Farmlet is advantageous in terms of dataflow. Of course, this faces obvious 
technological problem of board size and density. The number of processing nodes is likely to be between 4 
and 8. 
 
The L1 Trigger architecture shows that events of “Triplet Data” are built by the L1 Trigger Switch. Every 
Switch output is connected to a Farmlet input as shown in Figure 1. A centralized event buffer and 
scheduler in the Farmlet (i.e the Buffer Manager), distributes events to the processing nodes.  
 

 

Figure 1 

The following analysis uses as example a Farmlet with 4 Processing nodes. The data bandwidths in the 
Farmlet were calculated in [1]. The event processing times used in the data flow analysis simulations were 
taken from simulations of the L1 Track and Vertex algorithm using available hardware (e.g. Intel P3-M 
1.13GHz).  
 
The following numbers are used in the calculations: 
Pixel Detector Output Bandwidth: 47.3 MB/s 
Number of L1 Trigger Highways: 8 
Number of Processing Nodes per Farmlet: 4 
 
A crude cost analysis shows that the cost of the L1 Trigger is driven by the cost of the processors and 
associated circuitry more than the cost of the memory needed or the cost of the data links.  
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2 Input data characterization 
 
The input data has segments of trajectories that represent “triplets” of pixel hits. In fact each “triplet” 
includes 6 points, corresponding to 3 bend-view and 3 non bend-view hits of consecutive Pixel Detector 
stations. However, in the current analysis we follow the convention of representing a “triplet” by 2 entries; 
one containing the 3 bend-view hits and a second one with the 3 non bend-view hits. Hence, the number of 
“triplets” doubles. The Triplet Data distribution is as shown in Figure 2. The average number of Triplets is 
88.9 three-hit triplets. If a triplet can be represented by 16 bytes, and average event is about 1.5KB. 
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Figure 2 

 
The 2500 event statistics shows that about 12.7% of the events are empty of triplets. If we only average 
over non-empty events, the mean event size is 102 triplets/event. 
 
 
2.1 The event execution time distribution 
 
Figure 3 shows the event execution time distribution on an Intel P3-M 1.13GHz. The average execution 
time is 90.91 µs. The distribution is exponential with parameter µ=1/average execution time, but it also has 
few events in a long tail.  
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Figure 3 

2.2 The Farmlet input distribution 
 
It has been shown in [1] that the Triplet Data distribution is exponential. The occurrence of new events is 
exponentially distributed. The event size distribution convolutes with the arrival distribution. The mean 
event-interarrival time of the input distribution can be used as a design variable. In fact, the mean event-
interarrival time depends on the number of Farmlets or L1 Switch outputs enabled. The calculation of the 
number of Farmlets based on dataflow issues is one of the main results of the current analysis.  
 
 
3 Elementary Dataflow Analysis 
 
The simplest model for the Farmlet is the M/M/1 queue. We can model the Farmlet’s Buffer Manager 
(BM) (Figure 4) as such queue. The input to the BM is the Triplet Data and it is stored in an input buffer 
(FIFO). The service distribution is composed by the sum of the individual service distribution of the 
processors in the Farmlet. Since the sum of few Poisson streams is also Poisson, the queue can be modeled 
as M/M/1. In fact, this reasoning works both ways. We can either think that the BM is an M/M/1 process 
whose mean interarrival time is λ and mean service time is Nµ or we can define an M/M/1 process for the 
individual computing nodes defining the mean interarrival time as λ/N and the mean service time as µ. N is 
the number of computing nodes in the Farmlet. See Figure 5. 
 

Figure 4 

The steady state distribution of the M/M/1 process is given by: 
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ρ =  λ/µ  represents the utilization of the processing node. For this simple process the Idle Time is equal to 
po or 1-ρ. The problem is that both the average queue size and the latency in processing an event (i.e. the 
queuing time) approach infinite as ρ approaches 1. 
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Figure 5 

 
For instance, a utilization of 90% of the server implies an average queuing time equal to 10 times the 
average processing time. That is, 0.9 ms for the average processing time shown above. The average queue 
size for 90% utilization is 9 events, which is about 13.5 KB for an average of 1.5KB/event. 
The variance in the queue size is given by  

( )21
___

ρ
ρ

−
=sizequeueofVariance  

It means that if we want to operate the server at 90% utilization and be able to store 99.99% of the events 
(µ+4σ) we need to be able to store at least 47 events (i.e. 70KB, σ=9.487). 
 
 
4 Processor Failure Analysis 
 
This is very important topic to analyze because in a 2500 processing node system reliability is a big issue. 
The current architecture is based on Farmlets with a fix number of nodes per Farmlet. If a node fails, the 
Buffer Manager in that Farmlet can reroute the buffered events to the nodes still working until the failing 
node comes back to operation or the whole Farmlet is replaced. It is obvious that to keep the Farmlet in a 
stable state the utilization factor ρ after the failure must be smaller than 1. Here, we define stability as the 
ability of the system to keep operating at full capacity, keeping the event queue away from overflowing and 
event execution times finite In other words, 

N
N

N
N

BFBFAF
1

1
−<⇒

−
= ρρρ  (1) 

 
where N is the number of processing nodes in the Farmlet. Equation (1) tells us that if we want to have a 
high utilization of the processing Farm before a failure and be able to keep the Farm stable after a node’s 
failure, we must increase the number of processing nodes to distribute the workload of the failing node 
among more processors. Increasing the number of processing nodes per Farmlet lowers the cost per node of 
shared resources in the Farm such as PTSM network, Buffer Manager, and I/Os; but there are some hard 
limitations to it. The data I/O and Buffer Manager’s bandwidths increase linearly with the number of 
processors. Implementing larges Buffer Managers is more complicated and may increase the cost. Large 
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PC board sizes are usually not recommended for many reasons. The Farm’s reliability decreases with the 
number of processing nodes.  
 
 
4.1 Node Failures 
 
There are several modules in the Farm whose failure will cause the entire Farm to fail. If the failure is 
permanent (e.g. a hardware failure) the Farm must be switched off and replaced. On the other hand, the 
failure of a single node in a Farm may be tolerated at least for a short period of time. A failure can be 
considered transitory (or recoverable) as opposed to permanent (or a long time failure) if the failure time is 
short or the processing node can be restarted in a short time compared to the system’s dynamics. Section 4 
analyzed Farm stability after permanent failures. However, many processing node failures can be 
recoverable (e.g. software runtime failures). The following section analyzes the transient behavior of a 
Farm after a node’s failure and the possibility of maintaining stability when the node’s failure is 
recoverable. 
 
 
4.2 Transient Analysis 
 
The M/M/1 transient analysis is far more complicated than the one made for the equilibrium point. In the 
equilibrium analysis we get rid of the time variable, in the transient analysis we must work with the full 
differential-difference equations given by 
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To solve this set of equations analytically, the easiest way is to resort to transform methods. Since we have 
a continuous variable (i.e. time) and a discrete variable (i.e. queue state probability k) we need to use the 
Laplace transform and the Z-transform respectively. Applying both to equation 2a and using 2b to reduce 
the number of unknowns we obtain 
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where )(* sPo is the Laplace transform of the distribution of the idle state po. )(* sPo can be determined 
using the property of analyticity of the transformations. The solution to equation (3) is 
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k  is the modified Bessel function of the 1st kind (Figure 6). 

 



 

Figure 6 

 
Ecuation (4) is ill suit for calculation using numerical methods. It not only multiplies increasing and 
decreasing exponentials but an infinite sum of them. Instead, for the present analysis I have chosen to 
follow the Orthogonal Least-Squared Approximation method suggested by Bolot [REF].  
 
 
4.3 Orthogonal Least-Squared Approximations to the Transient Analysis of 

the M/M/1 queue 
 
Equation (4) represents the instantaneous state probability distribution of the M/M/1 system. That is a 
whole distribution for every instant of time. However, we are more interested in how the average queue 
size evolves with time rather than the instantaneous value. We define the transient mean queue size as 
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in Section 3. 
It can be shown that Q(t) is monotonically increasing with exponential behavior. The Orthogonal Least-
Squared Approximation (OLS) uses the following model 
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to approximate Q(t). The measure of approximation is the L2 norm 
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Of course, we can get rid of the square root and minimize the square of the L2 norm with respect to the ai 
and bi coefficients. In any case, this is not an easy task, which becomes harder as we raise the order of our 
approximation model. 
 
A first order model is quite simple and can be expressed in closed form. Let the model be 
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b1 is the reciprocal of the time-constant of the exponential function, which is a better demonstrator and will 

be used later on. Let 
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The first order approximation works quite well for small ρ but it is not so accurate for ρ closer to 1. Figure 
7 shows the real Q(t) and the 1st and 2nd order approximations for ρ=0.9. 
 

 

Figure 7 

 
The second order approximation uses the model 
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The minimization procedure gets more cumbersome and the optimal coefficients must be found by 
numerical methods. For instance for ρ=0.9, ai=-4.401, b1=0.0572µ ,  and b2=0.0058µ . Figure 7 shows 
that q2(t) approaches Q(t) very closely even for high ρ. The approximation errors can, also, be calculated 
numerically. 
 
The beauty of the OLS analysis is its simplicity, and the fact that we can characterize the M/M/1 dynamics 
with very simple parameters. It is customary to characterize a signal’s exponential behavior by its time 
constant (also called relaxation parameter). The 1st order approximation model’s time constant is expressed 
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by Equation (5) as a function of ρ and µ. Figure 8 shows the Time Constant τ as a function of µ (i.e. the 
processor’s average service time), parameterized by ρ. 

 

Figure 8a 

The 2nd order model has two time constants one for each exponential 
 

 

Figure 9b,c 

As both plots show, the model’s dynamics speeds up with µ. That is, faster processors or a larger number 
of them per Farmlet will lower the time constants of the exponentials and the system approaches faster to 
its steady state. Secondly, it can be observed that higher ρ “slow down” the system’s dynamics. Of course, 
the price to pay for this slower dynamics is a larger average queue size but this should not be an issue in 
our case because we are only talking about Kbytes. On the other hand, ρ, which is a design parameter, will 
be chosen based on the allowed Farmlet’s “Idle Time”, which is the expensive commodity, and not based 
on memory buffer size. Indeed, the memory buffer size is a dependent variable. 
 
The 1st and 2nd order approximation time constants allow us to calculate how much time we allow to restore 
the failed processor in the Farmlet as a function of how much excess buffering and processing latency we 
can afford. Furthermore, as we increase ρ, the system can enter quickly into the unstable mode and all new 
events will be queued up, forcing the Buffer Manager to start throttling out data. 
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4.4 Simulations of the M/M/1 transient behavior 
 
The simulation of the transient M/M/1 shows the behavior of the buffer queue and the processing nodes. 
The input data to the transient M/M/1 simulation comes from Geant simulations of the BTeV’s detector. 
The raw pixel data has been run through a Pixel Processor and Segment Tracker simulator, which finds the 
Triplet Data as defined in Section 2. Please, see reference [1] for details. The simulation of the transient 
M/M/1 does not include the entire Track and Vertex finding code. Instead, the processing time values 
corresponding to each event were taken from other tests where the Track and Vertex code was actually run 
on hardware [1]. 
 
The first simulation shows the turn-on of the Farmlet. The Farmlet has 4 processing nodes. The event’s 
execution time pdf is as shown in Figure 3, which has a mean of 90.91µs As said in Section 2, the input 
data rate is a design parameter. The L1 Trigger can control the mean event-interarrival time to a Farmlet by 
controlling the number of Farmlets hooked to the L1 Switch outputs. In the current simulations we set this 
value to a value that provides the desired ρ. Figure XXX shows the evolution of the Buffer Manager’s 
queue for ρ=0.688.  
 
(to be complete) 
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